Building an Open Chiplet Economy

The 2nd International HiPChips Workshop, February 26th

Collocated with HPCA 2023 Montreal Canada

Cliff Grossner, Ph.D. VP Market Intelligence & Innovation Bapi Vinnakota, Ph.D., Open Compute Project

Open Compute Project Foundation

The Rise of Diverse Domain-Specific Architectures

Al and Machine-learning and data-heavy workloads have exploded in past 5 years and will diversify as new applications are discovered constantly...

From D Jani, Meta, Sep 19

Chiplets Will be Everywhere Chips Are

End vertical	Example	2020	Power	I/O	Other
Automotive	ADAS, Infotainment Chassis	8.3%	10s of W	10s of Gbps	Long life
Communication	Smartphones	32.9%	< 10 W	Gbps	Rapid churn
Consumer	TVs, Digital Set-Top Box	10.4%	< 10 W	Gbps	Cost sensitive
Data processing	PCs, Servers, Storage Media	37.7%	100s of W	100s of Gbps	Rapid churn
Industrial	Automation, Healthcare, Security	10.7%	10s of W	10s of Gbps	Harsh environment

Semiconductor worldwide revenue by end vertical, sales (source: Gartner)

Diversity in power, performance, cost, business

Accenture: Harnessing the Power of the Semiconductor Value Chain

requirements.

For a Chiplet Economy...

To meet huge diversity in requirements we need

- A core set of application specific standards
- A low barrier to entry for innovation
- Freely customizable for applications

Build and let the market use as it sees fit

...Need New Integration Across The Value Chain

Establishing a New Open Chiplet Economy

Platform Elements for Rapid Growth

	Business	SiP	SiP	Chiplet
	Workflow	Integration	Design	Interconnect
Standards		Digital Chiplet Physical Descriptions Modularity	Digital Chiplet Functional Descriptions	PHY layer Link layer Trans. layer
Tools and Reference	SiP cost models Known-Good Die contracts	Package Analysis & Tools Device Test	Architecture Exploration Test Package	Selection Guides Channel models Open Designs
Production	Business	In-field	Chiplet	
Support	Logistics	management	Catalog	

It Will take a Village...

- JEDEC: Microelectronic Industry Standards
- OCP: Modularity and DC Requirements
- UCIe: Chiplet Interconnect & Market Development
- IEEE HIR: Packaging & Assembly Roadmaps
- DMTF: Device Management
- SEMI: Business Models

...And It is a journey that has already started

Business Impact	Expensive development	Economies of scale Rapid innovation Easier external chiplets	Marketplace
Development Impact	Closed product Proprietary fabric Custom functions	Closed chiplet families with open fabric Semi-custom	Open product Open fabric Standard functions
Technology Standards Proof-points	Infinity Fabric (prop) AMD Ryzen	Silicon-proven IP XSR, AIB, BoW, AXI OCP-JEDEC CDXML BoW chiplets for AI, RISC-V, NIC, FPGA	Plugfests Interoperable data Business templates

2023

OCP Investing to Establish an Open Chiplet Economy

(Accelerating advanced computing) Open Domain Specific Architecture Project, Since 2018

OCP ODSA Key Achievements to date

- Reference tools
 - D2D comparison spreadsheet
 - Chiplet cost model
 - Channel models
- OCP-JEDEC CDXML part models
 - Standard for chiplet physicals description
- No-license cost BoW spec from many vendors
 - Scalable 65nm-7nm, Laminate/advanced packaging, stable gen 2 draft
 - Silicon-proven, measured < 0.5 pJ/bit, 800 Gbps/mm in laminate packaging
- Open-source package design
 - First open cross-company D2D interop demo

https://www.opencompute.org/wiki/Server/ODSA

ODSA Impact is Significant and Continues to Grow

- Blue Cheetah family of BoW-based D2D solutions
- <u>eTopus/Quicklogic/Comira BoW/FPGA/Ethernet I/O</u>
- NXP BoW256 PHY development
- BoW PHY Interoperability Testing
- DreamBig BoW based Chiplet Platform for SmartNIC's
- D-Matrix BoW D2D Interface for Multi-Chiplet AI System
- Ventana Micro Systems RISC-V CPU using BoW
- Fraunhofer implements BoW on Samsung 5nm Technology

Takeaways

- Market is diverse, there will be many domain-specific solutions
- Rapid innovation requires light standards with low barriers to entry, reuse and adaptation
- Open communities are critical to accelerating the Open Chiplet Economy

Compute

Project[®]

Learn more at opencompute.org!

Need Standardized Business Workflows & Relationships

Responsibility for Quality

- Economic model for an escaped bad die
- Standards to ensure quality of substrate
- Chiplet testability may require additional die area (costs) Interoperability
- Standardization and extension of existing test standards Interface Best Practices
 - Standard driver strength and test bumps
- Adequate design margin and die loopback Interconnects
 - Standard end to end simulation environments
 - Need known substrate tests

Assembling a System In Package

Chiplet Description Schema automates SiP design and build

Chiplet economy as modeled after today's silicon business will require

- Standardized design models to ensure operability in EDA workflows
- Standardized design and integration workflows for SiPs
- Integration to build SiPs in the context of multi-chiplet modules for 2.5D stacked, and 3D Integrated circuits
- Electronically readable descriptions must include following information:
 - Thermal •
 - Physical/Mechanical •
 - **Behavioral** •
 - Power, Power/Signal Integrity ٠
 - Electrical, Test •
 - Security information ٠

Schema.xsd
<pre>cadischem wihs:xdd="http://www.wb.org/2001/2015Chem vadielement name"(DDPL" type="xsistring"/= cadielement name="CDPL" type="xsistring"/= cadielement name="top" type="xsistring"/> cadielement name="top" type="xsistringer"/> cadielement name="top" cadielement name="top" type="xsistringer"/> cadielement name="top" cadielement name="top" type="xsistringer"/> cadielement name="top"</pre>
F 7 8 5 8 1 5 8 10 10 10 10 10 10

Standardized Chiplet test bench for interoperability and 3rd party validation

Accelerating the Emerging Market

- Interop, testing and validation facilitates deployments in commercial products
- An open test platform benefits everyone
- Common API for Chiplet diagnostics reduces friction
- Standardized Chiplet signal and power integrity testing
- Test across different interconnect structures and data rates
- Open source test software reduces effort

Chiplet Interconnect Test Patterns

Standardized interconnect comparison benchmark enable informed choice

Provide Community Developed and Common Criteria Precise definition of all criteria extreme importance

- Piece cost per Unit
 - Examines manufacturing cost implications imposed by interconnect and substrate area requirements
- Operating Cost
 - Covers power vs performance at specific throughput
- Design Impact
 - Measures routing flexibility, ease of process node diversity and complexity of IP block integration and test
- Product Integration
 - Evaluates die interface test, assembly and port complexity
- Packaging Cost
 - Counts manufacturing costs for different substrates (2D, 2.XD and 3D integration)

Standard logical interconnects allow physical interconnect interchangeability

Community Derived Link Layer (Open Spec)

- **Simplicity:** focus on die disaggregation; eliminate complexities of CDR, CRC/retry, etc.
- Low Latency: enable aggressive implementation techniques; use FEC to eliminate serialization overhead of CRC
- Scalability: support different lane data rates and slices
- **Portability:** interfaces can be built with different implementation methodologies and process nodes
- **Extensibility:** create a modular framework (interface profiles):
 - Addition of new features
 - Allow customization
 - Enable interoperability across interconnects

Physical Interconnect (BoW) is natural choice to extend AXI for Chiplets

- Specification Optimized for Maximum Applicability
 - Designer can select operating point that matches use case
 - Minimalist approach to required features
 - Single logical unit (16 lane slice) applies to all package options
 - No direct requirements on channel loss or crosstalk, conformance based upon error rates
 - Specifies signal ordering at the Chiplet edge, rather than explicit bump maps
- Key Attributes for Economies of Scale
 - Cost and energy-efficient (0.25 -0.5pJ/bit)
 - High-performance (2-16Gb/s/line) across wide range of process nodes (65nm 5nm)
 - Use cases (25mm reach, <1e-15 BER)
 - BoW-384 (24Gb/s/line) and BoW-512 (32Gb/s/line) under construction

